

### Improve Seed Production Through Actionable Insights From Soil Biology



WWW.TRACEGENOMICS.COM

### **TRACE** GENOMICS

## Managing the Soil Microbiome

Ariel Zajdband, PhD

### 20-30% of all fixed carbon is transferred to the rhizosphere through root exudates

### Crops are supporting soil microbial communities

## Soil microbial communities

Soilborne pathogens Organic matter and Nutrient cycling Plant growth promotion Biocontrol Mycotoxins Soil physical fertility Herbicide breakdown How do we quantify the soil microbial communities?

### Soil metagenomics

Soil sampling

### **DNA** extraction

### Sequencing

### Bioinformatics

### Indicators

### How can we improve crop management with soil metagenomics?

## When Is Seed Treatment

### Worth It?







Individual results may vary

Average Yield



### 60% of the time, it works every time.

# Measuring the risk pre-planting

#### Soilborne Pathogens

The level of inoculum in the soil is measured as log(pg DNA/g soil). The levels known to cause disease are in bold. C: Corn, S: Soybean ND: Not Detected

| Dathogon                   | C     | SAMPLE NAME |      |      |      |      |      |      |      |  |
|----------------------------|-------|-------------|------|------|------|------|------|------|------|--|
| Pathogen                   | Crops | A1          | A2   | A3   | B1   | B2   | B3   | C4   | C5   |  |
| Colletotrichum graminicola | C, S  | 1.32        | 2.22 | 2.12 | ND   | 1.13 | 1.02 | 0.82 | 1.21 |  |
| Fusarium graminearum       | s     | ND          | ND   | ND   | 1.21 | 1.26 | 1.17 | ND   | ND   |  |
| Fusarium spp.              | С     | 0.39        | 1.17 | 0.43 | 1.31 | 1.24 | 0.21 | 1.55 | 1.24 |  |
| Fusarium verticillioides   | C, S  | 0.21        | 0.08 | ND   | ND   | 0.72 | 0.34 | 0.17 | 0.11 |  |
| Fusarium virguliforme      | s     | 0.71        | 0.82 | 0.73 | ND   | 0.60 | 0.45 | ND   | 1.09 |  |
| Macrophomina phaseolina    | C, S  | 0.83        | 0.91 | ND   | 0.71 | ND   | 0.77 | ND   | 0.88 |  |
| Penicillium oxalicum       | С     | ND          | 0.13 | 0.42 | 0.15 | 0.18 | 0.21 | 0.11 | 0.71 |  |
| Phytophthora sojae         | S     | 1.13        | ND   | ND   | 1.32 | 1.43 | 1.73 | 1.92 | 1.41 |  |
| Pythium aphanidermatum     | C, S  | 1.42        | 0.46 | 0.76 | 0.89 | ND   | ND   | 0.43 | 0.21 |  |
| Pythium spp.               | С     | 0.03        | 0.14 | 0.08 | 0.23 | 0.21 | 0.63 | 0.14 | 0.03 |  |
| Pythium ultimum            | C, S  | 1.21        | 0.23 | ND   | ND   | ND   | 0.41 | ND   | 0.03 |  |
| Rhizoctonia solani         | C, S  | 0.02        | ND   | 0.31 | ND   | ND   | ND   | 0.11 | 1.02 |  |
| Rhizoctonia spp.           | С     | ND          | 0.71 | ND   | 0.62 | ND   | 0.60 | ND   | ND   |  |
| Sclerotinia sclerotiorum   | S     | ND          | ND   | 0.21 | ND   | 0.12 | 0.28 | 0.17 | ND   |  |

### **DISEASE RISK (%)**



Sudden Death Syndrome (Fusarium virguliforme)

# Improving nutrient management

#### Liebig Law of Minimum



### **Co-limitation**



Cossani and Sadras (2018)



#### log<sub>10</sub> (phosphorus concentration)

## Plant and microbial stoichiometry

Capek et al. (2018)

#### Soil Health Indicators



#### ORGANIC MATTER AND NUTRIENT CYCLING

These group of indicators quantify the relative abundance of functional genes involved in processes related to carbon and nutrient cycling in the soil. The values are presented in a scale from 0 to 100 to allow comparisons between samples.

| Process         | Element | SAMPLE NAME |    |    |    |    |    |    |         |  |
|-----------------|---------|-------------|----|----|----|----|----|----|---------|--|
|                 |         | 1A          | 1B | 2A | 2B | ЗA | 3B | 4A | AVERAGE |  |
| Sequestration   | C (OM)  | 64          | 53 | 59 | 88 | 93 | 76 | 69 | 72      |  |
| Fixation        | Ν       | 97          | 98 | 99 | 98 | 98 | 97 | 96 | 98      |  |
| Denitrification | Ν       | 78          | 95 | 94 | 98 | 76 | 86 | 94 | 89      |  |
| Nitrification   | Ν       | 95          | 90 | 86 | 93 | 74 | 97 | 99 | 91      |  |
| Volatilization  | Ν       | 94          | 94 | 96 | 97 | 99 | 89 | 97 | 95      |  |
| Mineralization  | Ν       | 77          | 92 | 84 | 93 | 92 | 80 | 74 | 85      |  |
| Solubilization  | Р       | 23          | 49 | 42 | 62 | 66 | 75 | 60 | 54      |  |
| Mineralization  | Р       | 79          | 87 | 90 | 81 | 82 | 83 | 79 | 83      |  |
| Mineralization  | К       | 93          | 85 | 88 | 84 | 77 | 71 | 78 | 82      |  |
| Mineralization  | S       | 11          | 8  | 23 | 26 | 22 | 18 | 23 | 19      |  |
| Mobilization    | S       | 59          | 73 | 69 | 66 | 58 | 71 | 61 | 65      |  |
| Solubilization  | Zn      | 82          | 81 | 79 | 73 | 67 | 70 | 76 | 75      |  |
|                 |         |             |    |    |    |    |    |    |         |  |

# Functional analysis



2

# Better nutrient prescriptions

| Phosphorus Dry or Field-Moist and Slurry Soil Tests (ppm) |          |       |          |             |                   |  |  |  |  |
|-----------------------------------------------------------|----------|-------|----------|-------------|-------------------|--|--|--|--|
| Soil Test Category                                        | Very Low | Low   | Optimum* | High        | Very High         |  |  |  |  |
| Bray P1 and Mehlich-3 P                                   | 0–8      | 9–15  | 16–20    | 21–30       | 31+               |  |  |  |  |
| Olsen P                                                   | 0–5      | 6–9   | 10–13    | 14–18       | 19+               |  |  |  |  |
| Mehlich-3 ICP P                                           | 0–15     | 16–25 | 26–35    | 36–45       | 46+               |  |  |  |  |
| P <sub>2</sub> O <sub>5</sub> to apply (lb/acre)          |          |       |          |             |                   |  |  |  |  |
|                                                           | 100      | 75    | 58       | 0           | 0                 |  |  |  |  |
|                                                           |          |       | WE ARE!  | A COLOR AND | The second second |  |  |  |  |

# Beyond functional microorganisms



- Functional microorganisms (e.g. N or P provisioning)
- Functional microorganisms (e.g. drought resistance)
- Functional microorganisms (e.g. nematode suppression)
- Pathogenic microorganisms (type I)
- Pathogenic microorganisms (type II)
- Nominated core microorganisms
- Other hub microorganisms
- Other microorganisms







Core reinforcement

Toju et al. (2018)



### Ariel Zajdband, PhD Head of Product

+1 650-796-8987 ariel@tracegenomics.com